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Abstract

In this paper a new analytical model is presented that accurately predicts the forced response of fibre
reinforced plastic (FRP) sandwich plates subjected to transverse applied loads. It is based on Reddy’s
refined high order shear deformation theory and offers the feasibility of accounting for the viscoelastic
properties of the constitutive materials without restriction to the steady state motion. This is achieved by
modelling the viscoelastic behaviour of the constitutive materials using the Golla Hughes McTavish
mathematical tool. Validation of the new approach is achieved by comparing results under harmonic
loading conditions against data obtained using the proposed new analytical model. Subsequently, predicted
responses for a given FRP sandwich plate under various transverse applied loads are presented. The results
outline the importance of being able to account for the viscoelastic properties of the constitutive materials
when modelling the dynamic behaviour of sandwich structures.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fibre reinforced plastic (FRP) sandwich materials offer advantages in terms of high specific
stiffness and strength values. Furthermore they are corrosion resistant, have good anti-vibration
and anti-noise properties and this makes them suitable for a variety of structural engineering
applications. Sandwich structures have been the subject of many investigations. A large amount of
literature has been devoted to the development of theories for conventional sandwich structures
and to the study of their static and dynamic behaviour. A detailed review of this work is given in
books by Plantema [1] and Allen [2] and in the paper written by Noor et al. [3]. The pioneer
worker, Reissner [4] suggested a simple model to describe a sandwich plate known as the classical
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sandwich theory (CST). This theory is based on the assumption that the facings are thin, stiff
and heavy compared to the core. Most of the work, which was carried out up until the early
1990s, was based on these assumptions. Recent work has focused on improving the CST by
including more ‘‘physical mechanics’’. The main issue, which has been investigated, is the
feasibility of accounting for the shear effect in both the faces and the core since, as emphasized by
Khdeir and Reddy [5], transverse shear deformation effects significantly alter the plate response.
New analytical and finite element models [6,7] have therefore been developed based on the first
order shear deformation theory (FSDT) to investigate the static and free vibration behaviour of
FRP sandwich plates. Then, the authors developed an analytical model based on Reddy’s
refined high order shear deformation theory (HSDT), which allows the study of the dynamic
behaviour of FRP sandwich plates [8]. This method has the advantage, when compared to the
CST and FSDT, of taking into account both the bending and the shear effect in the core and in
the faces. Besides, it represents the true parabolic variation of the shear stress through the
thickness of the plate. This technique has been used with success to investigate the transient
response of undamped sandwich panels [9]. However, sandwich structures made of fibre
reinforced faces and PVC foam core exhibit viscoelastic damping. This mechanism influences the
dynamic response of a structure and so needs to be accounted for when dynamic analyses are
carried out.
The use of passive damping treatment in order to improve the damping properties of a given

structure has led to numerous research works being carried out on plates made up of two elastic
layers with a thin viscoelastic damping layer. Lu et al. [10] and He and Ma [11], for example,
carried out free vibration analyses of such panels. However, as far as FRP sandwich plates made
up of a relatively thick damped core are concerned, little work has been devoted to their analysis.
The free vibration analysis of such panels was first investigated by Cupial and Niziol [6]. They
modelled the laminated faces using the FSDT and the properties of the core material using the
elastic–vicoelastic principle. Since they neglected the damping effect of the faces and the in-plane
stresses within the core, only the knowledge of the complex shear modulus was required. More
recently, the authors [12] have also used the elastic–viscoelastic approach to model FRP sandwich
plates having viscoelastic material properties. In this case the sandwich plates were modelled using
Reddy’s HSDT. The proposed method allows the prediction of the dynamic properties, namely
the natural frequencies and modal loss factors of FRP sandwich plates, offering the feasibility of
accounting for the core and skins viscoelastic material properties. In this paper this method is
extended in order to predict the harmonic responses of FRP sandwich plates. However, the use of
the elastic–viscoelastic principle when applied to model the frequency-dependent dynamic
material properties restricts the analysis to a single frequency, steady state analysis. Consequently,
for transient analysis, a different viscoelastic model, which needs to be consistent across a broad
range of frequencies, should be considered. The lack of such a model has, up until now, limited
most of the analysis to steady state conditions. Nevertheless, with the increased use of active
damping treatment in the aeronautic and astronautic industries, more attention has been devoted
to the development of new mathematical models. New methods, based on the Laplace transform,
have been investigated and various expressions for the Laplace transform function were
suggested. One of the approaches to be considered was the fractional calculus method introduced
by Bagley and Torvik [13]. More recently, Golla, Hughes and McTavish have proposed the so-
called GHM method for the modelling of linear viscoelastic space structures [14]. This approach
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provides an alternative method which includes viscoelastic damping effects without restriction of
the steady state motion by providing extra co-ordinates. This approach combined with finite
element method has, for example, been used not long ago by Shi et al. [15] to model a cantilever
beam with active constrained layer damping treatments. Until now, this method has not been used
to model the viscoelastic behaviour of FRP or of PVC foam materials. Nevertheless, being able to
use this new approach appears really attractive.
In this paper, both the theory related to the enhancement of the GHM method to model the

viscoelastic behaviour of FRP sandwich constitutive materials and the theory related to its
implementation into the analytical model previously developed by the authors to model FRP
sandwich panels is presented. The responses obtained using this new method for a sandwich plate
subjected to harmonic loading are validated against results predicted using the method based on
the elastic–viscoelastic principle. The novel developed method, based on the GHM mathematical
model, is then used to predict and to investigate the responses of FRP sandwich panels subjected
to given transverse applied loads.

2. Theory

The sandwich panels considered in this paper are composed of two FRP composite laminated
faces of thickness hf and a rigid core of thickness hc: The fibre orientation in each lamina of the
faces is represented by an angle y; which is measured from the x-axis. The studied plate is assumed
to have a length a; width b and total thickness h as shown in Fig. 1.

2.1. Constitutive relation for viscoelastic material

FRP sandwich plates are made from viscoelastic materials. Viscoelastic materials possess a
capacity to both store and dissipate energy under load. This dual viscous and elastic character of
viscoelastic materials leads to a complicated behaviour, which cannot be described by either
elasticity or viscosity theory but a combination of both. Consequently, whereas the response of an
elastic material depends only on the total stress level at every instant of time, the response of a
viscoelastic material is not only determined by the current state of stress, but also determined by
all past states of stress. The fundamental mathematical characterization of viscoelasticity
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Fig 1. Sandwich plate geometry.
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has been obtained from this latter observation and is given by the following stress constitutive
relation [16]:

sijðtÞ ¼
Z t

�N

Cijklðt � tÞ
dekl

dt
dt; ð1Þ

where the variables are explained in Appendix C.
As explained by Christensen [16], the utility of the constitutive relation (1) is increased with little

loss of generality if the strain history is required to vanish on the interval to0: Further, the
continuity requirement on ekj at t ¼ 0 can be relaxed to admit a non-zero value for ekjð0Þ: The
constitutive relation then becomes

sijðtÞ ¼ CijklðtÞekjð0Þ þ
Z t

0

Cijklðt � tÞ
deklðtÞ
dt

dt: ð2Þ

The Laplace transform of this equation yields

*sijðsÞ ¼ s *CijklðsÞ*eklðsÞ: ð3Þ

It should be noticed that in the specific case where the structure is subjected to such steady state
oscillatory conditions, the viscoelastic stress–strain relation can be brought to the same form as
the elastic stress–strain equation by applying the correspondence principle of linear viscoelasticity
also called the elastic–viscoelastic principle [16]. Indeed when viscoelastic structures are subjected
to steady state conditions, the strain can be specified as being a harmonic function of time and so
expression (2) can be re-written in the form of relation (4) as explained in more detail in the
Meunier and Shenoi paper [12]

sijðtÞ ¼ C�
ijklðjoÞeklðtÞ: ð4Þ

In relation (4), the complex material stiffness coefficients, C�
ijklðjoÞ; are functions of the

constitutive material frequency-dependent complex moduli, E�
i ðjoÞ and G�

i ðjoÞ; which can be
determined experimentally. This implies that under steady state condition the elastic constitutive
equations can be easily updated to the viscoelastic case simply by replacing the real elastic moduli
by their frequency-dependent complex viscoelastic counterparts.

2.2. Equations of motion

2.2.1. Displacement field

The proposed analytical model is based on Reddy’s refined HSDT. This theory has initially
been developed to model FRP laminated plates [17] and it offers the feasibility of taking into
account the bending and the shear effects in both the faces and the core. Besides, it provides a
parabolic distribution of the shear stresses through the thickness, by which the conditions of no
shear stresses on the boundary planes are fulfilled. The displacement field associated with this
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theory is given by

uðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zfxðx; y; tÞ þ z3 �
4

3h2

� �
fx þ

@w0

@x

� �
;

vðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zfyðx; y; tÞ þ z3 �
4

3h2

� �
fy þ

@w0

@y

� �
;

wðx; y; z; tÞ ¼ w0ðx; y; tÞ: ð5Þ

Assuming this displacement field, the equations of motion expressed in terms of the displacement
co-ordinates for FRP sandwich plates can be derived using the principle of virtual displacement
and can then be solved exactly using, for example, a Navier-type solution. Following this
procedure and assuming elastic material properties, an analytical model, which offers the
feasibility to carry out free vibration and transient analyses of simply supported cross-ply and
antisymmetric angle-ply FRP laminated and sandwich plates, has previously been developed by
the authors [8,9]. However, this method, does not account for the viscoelastic properties of the
constitutive material. In order to overcome this drawback and so to account for the material
viscoelastic properties during dynamic analysis, a new analytical method based on the
displacement field given by relation (5) is proposed in this paper.

2.2.2. Steady state analysis
In the case of steady state analysis, the viscoelastic behaviour of the constitutive materials can

be modelled using the elastic–viscoelastic principle. With this method, simply by replacing the real
elastic moduli by their frequency-dependent complex viscoelastic counterparts, the general
vibration equations of motion can be written in the form of the following relation as explained in
more detail in Meunier’s thesis [18].

M½ � .D
�
ðtÞ

n o
þ K0ðoÞ
� �

þ j K00ðoÞ
� �� 	

D�ðtÞ

 �

¼ FðtÞf g: ð6Þ

Assuming that the studied structure is subjected to harmonic excitation, that is to say FðtÞf g ¼
F0 expðjotÞf g; then the equations of motion for FRP sandwich plates having viscoelastic material
properties can be written in the form

�o2 M½ � þ j K00ðoÞ
� �

þ K0ðoÞ
� �� 	

d�

 �

¼ F0f g: ð7Þ

Consequently, by assuming that for the excitation frequency and for this frequency only ½D� ¼
½K00ðoÞ�=o and K½ � ¼ K0ðoÞ

� �
the equations of motion for FRP sandwich plates subjected to steady

state condition can be expressed as:

M½ � .DðtÞ

 �

þ D½ � ’DðtÞ

 �

þ K½ � DðtÞf g ¼ F0 expðjotÞf g: ð8Þ

This equation can be solved using Newmark’s integration technique. The results provide the
coefficients of the column vector DðtÞf g ¼ UmnðtÞ;VmnðtÞ;WmnðtÞ;XmnðtÞ;YmnðtÞf g for each time
step and for each mode number (m, n) considered. The transverse displacement at any point
within the plate can then be determined using the following relation if a Navier solution type is
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assumed:

wðx; y; tÞ ¼
XN
m¼1

XN
n¼1

WmnðtÞ sinðaxÞ sinðbyÞ: ð9Þ

2.2.3. Transient analysis
When transient analysis of structures having viscoelastic material properties needs to be carried

out it is not possible to model the viscoelastic behaviour of the constitutive material using the
elastic–viscoelastic principle. Indeed, when used this method restricts the analysis to a single
frequency, steady state analysis. Consequently, when transient analysis of FRP sandwich plates
made of viscoelastic materials needs to be carried out, a different viscoelastic model, which should
be consistent across a broad range of frequencies, should be considered. As mentioned in the
Introduction, the GHM method appears as an attractive alternative approach that offers the
feasibility to model viscoelastic damping effects without restriction to the steady state motion by
providing extra co-ordinates.
The equations of motion of the HSDT for FRP sandwich panels made of linear viscoelastic

materials can be derived in the same way as the equations of motion of the HSDT for FRP
sandwich panels made of elastic materials. This is achieved simply by using the linear hereditary
stress–strain law (see relations (2)) instead of the generalized Hooke’s law. The equations
of motion obtained for FRP sandwich plates modelled using HSDT can then be expressed in
the form

M½ � .DðtÞ

 �

þ
Z t

0

Kðt � tÞ½ � ’DðtÞ

 �

dt ¼ FðtÞf g: ð10Þ

These equations can then be transformed in the Laplace domain. The result of this transformation
leads to

s2 M½ � *DðsÞ

 �

þ s *KðsÞ
� �

*DðsÞ

 �

¼ *FðsÞ

 �

: ð11Þ

In relations (10) and (11), the coefficients of the mass matrix M½ �; which are independent of the
viscoelastic material properties, can be calculated using the relations derived in the authors’
previous paper [8]. Having calculated the coefficients of the mass matrix, one faces the main task
of deriving the coefficients of the stiffness matrix s *KðsÞ

� �
in the Laplace domain. This has to be

achieved such that when relation (11) is re-written in the time domain linear second order
equations of motion are obtained.
The method developed to achieve this is based on the GHM approach. The GHM approach

models viscoelastic damping by adding additional ‘‘dissipation co-ordinates’’ to the system in
order to get a linear model providing the required damping properties. To achieve this the GHM
method requires the representation of the material modulus functions as a series of damped mini-
oscillator terms as shown below:

s *GiðsÞ ¼ G�
i ðsÞ ¼ #G0

i 1þ
Xk

p¼1

#ap
i

½s2 þ 2#zp
i #o

p
i s�

½s2 þ 2#zp
i #o

p
i s þ ð #op

i Þ
2�

 !
: ð12Þ
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In relation (12), the number of terms kept in the expansion is determined by the high- or low-
frequency dependence of the complex modulus.
In the equations of motion (11), developed for FRP sandwich panels having viscoelastic

material properties, the stiffness matrix is composed of 15 different coefficients each of them being
a function of at least one material modulus. In order to apply the GHM method to this multi-
modulus problem, a factorization of the matrix s *KðsÞ

� �
is necessary. Indeed, the matrix has to be

expressed as a series of component matrices s *KðsÞ
� �

i
; each dependent upon a single modulus

function s *GiðsÞ as shown in the following relation:

s *KðsÞ
� �

¼
X

i

s *KðsÞ
� �

i
¼
X

i

s *GiðsÞ %K
� �

i
: ð13Þ

Using relation (13) the equations of motion (11) in the Laplace domain can be re-written in the
form

s2 M½ � *DðsÞ

 �

þ
X

i

s *GiðsÞ %K
� �

i

� �
*DðsÞ

 �

¼ *FðsÞ

 �

: ð14Þ

Each of the ith modulus functions in the above equation can then be expressed in the mini-
oscillator form of Eq. (12). Consequently, by introducing a column vector of dissipation co-
ordinates, as expressed by relation (15), one can re-write the equations of motion in the Laplace
domain (14) in the form of relation (16)

*%z
pðsÞ


 �
i
¼

ð #op
i Þ
2

½s2 þ 2#zp
i #o

k
i s þ ð #op

i Þ
2�

*DðsÞ

 �

; ð15Þ

s2
M½ � 0½ �

0½ � M%z½ �

" #
þ s

0½ � 0½ �

0½ � D%z½ �

" #
þ

Kq

� �
Kq%z

� �
Kq%z

� �T
K%z½ �

" #( )
*D

 �
*%z

 �

( )
¼

*F

 �

0f g

( )
: ð16Þ

The expression of the constitutive sub-matrices of the mass, stiffness and damping matrices in
Eq. (16) are provided in Appendix A.
The coefficients of the sub-matrix M%z½ � are a function of the coefficients of the matrices %K

� �
i
as

can be seen by looking at the relations provided in Appendix A. Since the matrices %K
� �

i
admit

rigid motion, the mass matrix in relation (16) is not guaranteed to be a definite positive. To
remedy this situation, spectral decomposition of the stiffness matrices %K

� �
i
is achieved and it leads

to the derivation, as shown in relation (17), of the diagonal matrices %K
� �

i
; of the non-zero

eigenvalues of the matrices %K
� �

i
and of the matrices %R

� �
i
of which each column corresponds to the

associated orthogonalized eigenvectors. It should be noticed that this decomposition separates the
eigenvalues into elastic (non-zero) and rigid-body (or zero) modes

%K
� �

i
¼ %R
� �

i
%K
� �

i
%R
� �T

i
: ð17Þ

Finally, to achieve the objective of having fewer dissipative co-ordinates and a positive definite
viscoelastic matrix, each diagonal matrix %K

� �
i
is multiplied by the associated equilibrium modulus

#G0
i ; such that K½ �i¼ #G0

i
%K
� �

i
: Then the substitutions provided in relations (18) and (19) are carried out

zf gi¼ %R
� �T

i
%zf gi; ð18Þ

R½ �i¼ %R
� �

i
K½ �i: ð19Þ
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Applying these substitutions to Eqs. (16) leads to the final form of the viscoelastic equations of
motion written in the Laplace domain as expressed by relation (20). This relation is then re-
written in the simplified notation form in relation (21):

s2
M½ � 0½ �

0½ � Mz½ �

" #
þ s

0½ � 0½ �

0½ � Dz½ �

" #
þ

Kq

� �
Kqz

� �
Kqz

� �T
Kz½ �

" #( )
*D

 �
*%z

 �

( )
¼

*F

 �

0f g

( )
; ð20Þ

s2 Mv½ � þ s Dv½ � þ Kv½ �
� 	

*Dv


 �
¼ *Fv


 �
: ð21Þ

In relation (21), the matrices Mv½ �; Dv½ � and Kv½ � are, respectively, the GHM viscoelastic mass,
damping and stiffness matrices. Their coefficients, which are amongst other things dependent on
the mini-oscillator parameters and on the coefficients of the matrices R½ �i and K½ �i; are derived
using the expressions provided in Appendix B.
In the Laplace domain the stiffness coefficients have been expressed using the GHM analytical

model involving a sum of rational functions of second degree. The algebraic form of the mini-
oscillator terms allows one to write the equations of motion in the Laplace domain in the form of
relation (21). This then enables one to derive linear second order equations of motion in the time
domain. The derived second order equations of motion in the time domain are expressed by

Mv½ � .DvðtÞ

 �

þ Dv½ � ’DvðtÞ

 �

þ Kv½ � DvðtÞf g ¼ FvðtÞf g: ð22Þ

After deriving the equations of motion in the time domain, the response of the studied structure
subjected to a given applied load can be obtained by solving Eq. (22) using Newmark’s numerical
integration technique. Different Newmark integration schemes exist. In this paper the constant
acceleration method is used. This particular scheme is well known for its properties of being
numerically stable. Using Newmark method, one can determine the coefficients of the column
vector DvðtÞf g ¼ DðtÞf g; %zðtÞf gf g for each time step and for each mode number (m, n) considered.
Then, the transverse displacement at any point within the plate can be derived as for the harmonic
case using relation (9).

2.3. Transverse applied loads

A correct mathematical representation of the applied load is essential in order to accurately
predict, using the presented method, the response of the studied panel. If a Navier solution type is
assumed the load needs to be expanded in a double trigonometric series. That is to say, the
transverse applied load can be expressed in the form

qðx; y; tÞ ¼
XX

QmnðtÞ sin ax sin by: ð23Þ

The load coefficient QmnðtÞ is a function of the type of applied loads, For example the Navier
solution for a sinusoidally distributed transverse load is given by

qðx; y; tÞ ¼ q0ðtÞ sin
px

a
sin

py

b
: ð24Þ

This implies that for a sinusoidally distributed load, the load coefficient, QmnðtÞ; is equal to q0ðtÞ
with m ¼ n ¼ 1:
For other types of load, the Navier solution is a series solution, which can be evaluated

for a sufficient number of terms in the series. In particular, for a uniformly distributed load,
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qðx; y; tÞ ¼ q0ðtÞ; the load coefficient is expressed as shown by Eq. (25) and for an hydrostatic load,
qðx; y; tÞ ¼ �q0ðtÞy=b; it is expressed as shown by relation (26)

QmnðtÞ ¼ �
16q0ðtÞ
p2mn

for m; n odd numbers; ð25Þ

QmnðtÞ ¼ �
8q0ðtÞ
p2mn

for m; n odd numbers: ð26Þ

3. GHM method applied to model FRP sandwich constitutive materials

The presented new method is used in the following to predict the dynamic response of simply
supported rectangular sandwich plates (a=b=1m) composed of two FRP composite laminated
faces and a rigid PVC core as shown in Fig. 1. To achieve this, a program based on the theory
presented above has been developed using the software MATLAB. The sandwich plates that are
considered in this paper are assumed to have a length to thickness ratio, a/h, equal to 10 and a
relative core thickness to plate ratio, hc=h; equal to 0.94.

3.1. Dynamic material properties

In order to predict the transient response of simply supported FRP sandwich panels the
knowledge of the viscoelastic constitutive material properties (e.g., complex moduli) is required.
As far as FRP materials are concerned, a reasonable amount of data can be found in the
literature. In the present case it is assumed that each face is constituted of three layers of Eglass
fibres in epoxy resin oriented at 01, 901 and 01 having the elastic material properties provided in
Table 1. The core on the other hand is assumed to be made of closed cell polymer foam, namely
the HEREX C70.130 PVC foam, of which the viscoelastic properties have been determined
experimentally [12]. The measured material properties of the HEREX C70.130 PVC foam are
summarized in Table 2.
Since the faces are assumed to have elastic material properties only the complex

Young’s modulus and complex shear modulus of the core material need to be modelled
using the GHM mini-oscillator technique. The equations of motion in the Laplace domain
of the studied FRP sandwich plate can be derived from relation (14) and so can be expressed in
the form

s2½M�f *DðsÞg þ ð½K�s þ s *GcðsÞ½ %K�Gc
þ s *EcðsÞ½ %K�Ec

Þf *DðsÞg ¼ f *FðsÞg: ð27Þ

In this relation (27), K½ �s is the stiffness due only to the faces of the sandwich panels, s *GcðsÞ is
the shear modulus function of the core material, s *EcðsÞ is the Young’s modulus function of the
core material and %K

� �
Gc

and %K
� �

Ec
are the stiffness matrices with modulus factored out

respectively associated with the core shear and Young’s modulus functions. The first step of the
analysis consists of deriving the expressions for the modulus functions s *GcðsÞ and s *EcðsÞ: This task
is described in the following section.
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3.2. Representation of material properties using GHM mini-oscillator parameters

As mentioned before, the first task consists of deriving the parameters of each mini-oscillator
mathematical tool used to model each material complex modulus. Since in the present case only
the core constitutive material is assumed to exhibit viscoelastic damping, only two series of mini-
oscillator expression need to be determined namely one for the complex Young’s modulus and
one for the complex shear modulus of the HEREX C70.130 measured at 301C. To achieve this, a
least square fit has been applied to both of the complex moduli spanning a defined range of
frequencies. The real and imaginary parts of each complex modulus are considered
simultaneously with equal weighting using the following relations which are derived from
relation (7)

G0
iðoÞ ¼ #G0

i 1þ o2
Xk

p¼1

#ap
i

o2 � #op
i

� 	2� �
þ 2#zp

i #o
p
i

� �2
o2 � #op

i

� 	2� �2
þo2 2#zp

i #o
p
i

� �2
0
B@

1
CA; ð28Þ

G00
i ðoÞ ¼ #G0

i o
Xk

p¼1

#ap
i

#op
i

� 	2
2#zp

i #o
p
i

� �
o2 � #op

i

� 	2� �2
þo2 2#zp

i #o
p
i

� �2
0
B@

1
CA: ð29Þ

The program used has been realized using the software MATLAB. The function ‘‘lscurvefit’’ has
been used to achieve the task. ‘‘lscurvefit’’ function allows one to solve non-linear curve-fitting
problems in the least-squares sense. This function requires:

* The input data: that is to say the frequencies for which GHM approximation of the material
data is required.

* The output data: that is to say the real and imaginary values of the complex modulus for the
corresponding input frequency.

* The equations containing the parameters that need to be derived.

It should be noticed that first of all the program has been run assuming a varying number k of
mini-oscillator terms with the objective of finding the best approximation over the interval

Table 1

FRP laminated faces dynamic material properties [19]

Material properties E0
1 (GPa) E0

2 (GPa) G0
12 ¼ G0

13 ¼ G0
23 (GPa) n12 r (kg/m3)

Eglass/DX-210 37.78 10.90 4.91 0.3 1813.9

Table 2

Measured dynamic material properties of HEREX C70.130 PVC foam at 301C [12]

Material properties E0 (MPa) ZE G0 (MPa) ZG n r (kg/m3)

HEREX C70.130@301C 113.5 0.0288 18.86 0.067 0.32 130
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fA 1 Hz; 100 Hz½ �: The computational time has been found to increase drastically when k

increases. The optimum number of mini-oscillator terms for the studied examples has been found
to be 3. However, depending on the frequency range of interest a different number of terms might
be required. Indeed, if the frequency range of interest is increased, in order to keep the same
accuracy more mini-oscillator terms would be required for the modelling.
In Figs. 2 and 3, respectively, the real part and imaginary part of the complex Young’s modulus

and the complex shear modulus respectively are presented in the frequency range from 1 to
100Hz. In these figures the approximated real and imaginary values of the complex moduli over
the defined frequency range are compared with the calculated values using the equations of the
complex stiffness matrix [12]. The GHM mini-oscillator approximation form, of which
coefficients have been determined by best-fit curve, appears to accurately model, over the
considered frequency range, the complex material moduli.

4. Validation of the method

In order to validate the new developed method for transient analysis of FRP sandwich plates
having viscoelastic material properties the FRP sandwich plate, Defined in Part 3, is firstly
assumed to be subjected to a transverse sinusoidally distributed load harmonic in the time
domain. That is to say the transverse applied load is expressed by

qðx; y; tÞ ¼ q0 cosðotÞ sin
px

a
sin

py

b
: ð30Þ

In the example presented, it is assumed that q0 is equal to 106 N/m2 and o ¼ 80p rad/s.
The transverse displacement at the middle of the considered sandwich plates has been predicted

as a function of time using two different techniques, namely the novel developed analytical model
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Fig. 4. Response of a square FRP sandwich plate subjected to harmonic excitation.
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based on the GHM mathematical representation and the analytical method based on the elastic–
viscoelastic principle and summarized in Section 2.2.2 of this paper. The results obtained over a
period of time of 0.4 s are presented in Fig. 4. The plain line represents the displacement of the
plate computed using the analytical model based on the GHM model. The dotted line shows the
results predicted using the steady state equations of motion (6). It can be observed from Fig. 4
that when the steady state conditions are reached, the responses obtained with both methods are
identical. This leads to the conclusion that the proposed new analytical model, based on GHM
mathematical model, provides an accurate prediction of the dynamic responses of FRP sandwich
plates having viscoelastic material properties. This novel method can therefore be used with
confidence to predict the force response of composite plates having viscoelastic material
properties.

5. Transient response of FRP sandwich plates

Two examples are presented in this part. In the first example the square sandwich plate is
assumed to be subjected to a uniformly distributed load, qðx; y; tÞ ¼ q0ðtÞ; and in the second
example the plate is assumed to be subjected to a hydrostatic load, qðx; y; tÞ ¼ �q0ðtÞðy=bÞ: Both
loads are applied over two periods of time each of 0.06 s duration with an interval of 0.04 s as
represented in Fig. 5. The predicted transverse displacements as a function of time for the middle
of the FRP sandwich plates for the two types of applied loads are presented in Figs. 6 and 7,
respectively. As expected, the amplitude of the displacement of the sandwich plate subjected to a
hydrostatic load is smaller than when subjected to a uniformly distributed load. In each presented
example, after the load has been removed, the plate is subjected to free vibration. If the plate was
undamped the oscillation, once set up, would continue indefinitely. In the present situation, since
the viscoelastic damping of the core has been modelled and so accounted for, the response of the
FRP sandwich plate dies away with time. The rate at which the response of the plate dies away
gives us information on the amount of damping. This rate is known as the logarithmic decrement
and is related to ratio of the nth to the (n+N)th cycle amplitude as shown below:

d ¼
1

N
ln

wðnþNÞ

wn

: ð31Þ

The logarithmic decrement, d; for the considered examples has been found to be equal to
0.028. Knowing this value it has been possible to derive the envelope of the decaying oscillation.

0.06 0.1 0.16 Time (sec)0 

)(tqo

1e6 

Fig. 5. Transverse applied load intensity.
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This envelope is defined by an exponential curves, which has been drawn using dotted
lines in both Figs. 5 and 6. The higher the effect of damping the higher the value of the logari-
thmic decrement and so the quicker the response will die away. It can be observed that
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Fig. 6. Response of a square FRP sandwich plate subjected to a uniformly distributed transverse load.
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Fig. 7. Response of a square FRP sandwich plate subjected to a hydrostatic load.
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0.3 s after the load has been removed the amplitude of displacement of the studied plate has
been reduced by more than 60%. So, by modelling the viscoelastic properties of the PVC foam
core material it was possible to quantify the effect of viscoelastic damping. As demonstrated the
effect of the damping due to the viscoelastic behaviour of the constitutive materials has a
significant effect and so should not be neglected. This outlines the necessity of using the developed
new method when the responses of FRP sandwich plates need to be accurately predicted and
analyzed.
Finally, it should be emphasized that in the presented examples only the viscoelastic properties

of the core material have been modelled. However, the program allows the possibility to model
the viscoelastic properties of the constitutive materials of the skins as well as the core if these
should also prove to be significant. Besides it should be noticed that this method can also be
applied with a low number of mini-oscillator terms, as seen in a previous publication [14], to
model materials that present a more pronounced frequency dependence for their storage and loss
moduli than the HEREX C70.130 PVC foam material.

6. Conclusion

A new analytical model based on Reddy’s refined HSDT has been developed. It has been
found that this new analytical model provides an accurate prediction of the dynamic responses of
simply supported FRP sandwich plates. The main advantage of this new analytical model is
that it offers the possibility using the GHM mathematical tool to predict accurately the transient
responses as well as the steady state behaviour of FRP sandwich plates accounting for their
viscoelastic material properties. Consequently, it is possible using the developed analytical
model to gain a good understanding of the dynamic behaviour of FRP sandwich panels
likely to be subjected to dynamic loading. This can be of particular importance when design-
ing FRP sandwich structures likely to be subjected during their service life to dynamic
environments.

Appendix A

A.1. GHM viscoelastic mass matrix coefficients

The GHM viscoelastic mass matrix before decomposition is a function of the mass
matrix M½ �; and of the diagonal mass matrix M%z½ �; whose coefficients are a function of the
parameters of the GHM mini-oscillator forms. The diagonal sub-mass matrix M%z½ � is defined
as follows:

M%z½ � ¼

M%z½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � M%z½ �n

2
6664

3
7775:
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Each of the diagonal matrices M%z½ �i are defined by

M%z½ �i¼

#a1i
1

#o1
i

� 	2 %K
� �

i
0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � #ak
i

1

#ok
i

� 	2 %K
� �

i

2
6666666664

3
7777777775
:

A.2. GHM viscoelastic damping matrix coefficients

The GHM viscoelastic damping matrix before decomposition is a function of the diagonal
damping matrix D%z½ �; whose coefficients are a function of the parameters of the GHM mini-
oscillator forms. This diagonal matrix is defined as follows:

D%z½ � ¼

D%z½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � D%z½ �n

2
6664

3
7775:

Each of the diagonal matrices D%z½ �i are defined by

D%z½ �i¼

#a1i
2#z1i
#o1

i

%K
� �

i
0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � #ak
i

2#zk
i

#ok
i

%K
� �

i

2
6666666664

3
7777777775
:

A.3. GHM viscoelastic stiffness matrix coefficients

The GHM viscoelastic stiffness matrix before decomposition is a function of the stiffness matrix
Kz½ �; of the stiffness matrix Kq%z

� �
and its matrix transpose and of the diagonal stiffness matrix K%z½ �:

These sub-matrices are defined as follows:

Kq

� �
¼ K½ � þ

Xn

i¼1

Xk

j¼1

aj
i K½ �i;

Kq%z

� �
¼ �#a11 %K

� �
1

? �ak
n

%K
� �

n

� �
;

K%zq

� �
¼ Kq%z

� �T
;
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K%z½ � ¼

K%z½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � K%z½ �n

2
6664

3
7775;

where the matrix K½ � is defined by

K½ � ¼
Xn

i¼1

K½ �i¼
Xn

i¼1

#G0
i
%K
� �

i

and, where each of the diagonal matrices K%z½ �i are given by

K%z½ �i¼

a1i %K
� �

i
0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � ak
i

%K
� �

k

2
66664

3
77775:

Appendix B

B.1. GHM viscoelastic mass matrix coefficients

The GHM viscoelastic mass matrix is a function of the mass matrix M½ �; and of the diagonal mass
matrix Mz½ �; whose coefficients are a function of the parameters of the GHM mini-oscillator forms

Mv½ � ¼
M½ � 0½ �

0½ � Mz½ �

" #
:

The diagonal mass matrix Mz½ � is defined as follows:

Mz½ � ¼

Mz½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � Mz½ �n

2
6664

3
7775:

Each of the diagonal matrices Mz½ �i are defined by

Mz½ �i¼

#a1i
1

#o1
i

� 	2 K½ �i 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � #ak
i

1

#ok
i

� 	2 K½ �i

2
6666666664

3
7777777775
:
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B.2. GHM viscoelastic damping matrix coefficients

The GHM viscoelastic damping matrix Dv½ � is a function of the diagonal damping matrix Dz½ �;
whose coefficients are a function of the parameters of the GHM mini-oscillator forms

Dv½ � ¼
0½ � 0½ �

0½ � Dz½ �

" #
:

The diagonal damping matrix Dz½ � is defined as follows:

Dz½ � ¼

Dz½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � Dz½ �n

2
6664

3
7775:

Each of the diagonal matrices Dz½ �i are defined by

Dz½ �i¼

#a1i
2#z1i
#o1

i

K½ �i 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � #ak
i

2#zk
i

#ok
i

K½ �i

2
6666666664

3
7777777775
:

B.3. GHM viscoelastic stiffness matrix coefficients

The GHM viscoelastic stiffness matrix Kv½ � is a function of the diagonal stiffness matrix Kz½ �; of
the stiffness matrix Kqz

� �
and of the stiffness matrix Kz½ � whose coefficients are a function of the

parameters of the GHM mini-oscillator forms

Kv½ � ¼
Kq

� �
Kqz

� �
Kqz

� �T
Kz½ �

" #
:

The sub-matrices of the viscoelastic stiffness matrix Kv½ � are defined as follows:

Kq

� �
¼ K½ � þ

Xn

i¼1

Xk

j¼1

aj
i K½ �i;

Kqz

� �
¼ �#a11 R½ �1 ? �ak

n R½ �n
� �

;

Kzq

� �
¼ Kqz

� �T
;
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Kz½ � ¼

Kz½ �1 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � Kz½ �n

2
6664

3
7775:

Each of the diagonal matrices Kz½ �i are defined by

Kz½ �i¼

a1i K½ �i 0½ � ? 0½ �

0½ � & ^

^ & 0½ �

0½ � ? 0½ � ak
i K½ �i

2
66664

3
77775:

Appendix C. Nomenclature

a; b length and width of the plate
f frequency in Hertz
h thickness of the studied plate
hc; hf thickness of the core and of the faces
m; n number of vibration half-waves in the x and y directions
q; q0 transverse applied load and maximum amplitude of the transverse applied load
s Laplace domain operator
t time variable
u; v;w displacement components along the x; y; z co-ordinate direction
u0; v0;w0 displacement components along the x; y; z co-ordinate direction of a point on

the mid-plane
z thickness co-ordinate measured from the mid-plane of the plate
CijklðtÞ relaxation modulus components
C�

ijkl complex material stiffness coefficients
Ec; Gc Young’s and shear modulus of the core material
E0; G0 storage Young’s and shear moduli
E�; G� complex Young’s and shear moduli
E0
1; E0

2 storage Young’s modulus of FRP material in the direction along and normal to
fibres

G0
i; G00

i storage and loss moduli
G0
21; FRP in-plane storage shear modulus

G0
13; G0

23 FRP transverse storage shear moduli
G0 equilibrium value of modulus
#G0 GHM approximation to G0

s #GðsÞ Laplace transform function of the material modulus
Qmn transverse load coefficients
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Umn;Vmn;Wmn;
Xmn;Ymn

generalized spatial variation amplitudes

a; b ¼ mp=a; np=b
#a; #o; #z GHM mini-oscillator parameters
d logarithmic decrement
ekl strain components
fx; fy rotation of the transverse normal about the y- and x-axis, respectively
y fibre orientation relative to the x-axis in a lamina
n; n12 Poisson ratios
r density
sij stress components
t input time
o frequency in rad/s
%zf g; zf g vector of the dissipative co-ordinates
Ff g; Fvf g vector of the applied force and viscoelastic vector of the applied force
F0f g column vector of the amplitude components of the harmonic applied forces
d�

 �

complex eigenvectors
Df g; Dvf g vector and viscoelastic vector of the generalized spatial variation amplitudes
D�
 �

column vector of the complex values of the generalized displacements
D½ �; Dv½ � damping and viscoelastic damping matrices
Dz½ � sub-matrix of the viscoelastic damping matrix
D%z½ � sub-matrix of the viscoelastic damping matrix before decomposition
K½ �; K v½ � stiffness and viscoelastic stiffness matrices

K0
� �

; K00½ � storage and loss stiffness matrices

Kq

� �
sub-matrix of the viscoelastic stiffness matrix

Kqz

� �
; Kz½ � sub-matrices of the viscoelastic stiffness matrix

Kq%z

� �
; K%z½ � sub-matrices of the viscoelastic stiffness matrix before decomposition

s *KðsÞ
� �

matrix of the Laplace transform function of the complex stiffness coefficients
%K
� �

modulus factored out stiffness matrix
K½ �s stiffness matrix due to the faces of the sandwich plate
%K
� �

Gc
; %K
� �

Ec
modulus factored out stiffness matrix associated with the core shear and
Young’s modulus

M½ �; Mv½ � mass matrix and viscoelastic mass matrix
Mz½ � sub-matrix of the viscoelastic matrix
M%z½ � sub-matrix of the viscoelastic matrix before decomposition
%R
� �

matrix of the mode eignevectors of the stiffness matrix %K
� �

R½ � ¼ %R
� �

K½ �
%K
� �

diagonal matrix of the positive eigenvalues of %K
� �

K½ � ¼ #G0 %K
� �

ðBÞ Laplace transform
ð�Þ first time derivative
ð��Þ second time derivative
½ �T matrix transpose
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